Skip to main content

Erik Bekkers is Scientific Advisor on geometric deep learning within Ellogon AI. Erik is an assistant professor in Geometric Deep Learning in the Machine Learning Lab of the University of Amsterdam (AMLab, UvA). Before this he did a postdoc in applied differential geometry at the dept. of Applied Mathematics at Technical University Eindhoven (TU/e). In his PhD (cum laude, Biomedical Engineering, TU/e), he developed medical image analysis algorithms based on sub-Riemannian geometry in the Lie group SE(2) using the same mathematical principles that underlie mathematical models of human visual perception. Such mathematics find their application in machine learning where through symmetries and geometric structure, robust and efficient representation learning methods are obtained. His current work is on generalizations of group convolutional NNs and improvements of computational and representation efficiency through sparse (graphs) and adaptive learning mechanisms. Erik is a recipient of a MICCAI Young Scientist Award 2018 and a VENI personal research grant (awarded by the Dutch Research Council (NWO)).